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Baylis-Hillman adducts have been used as effective precursors tonation and allylation of allyl esters have also been reported.”®

for the synthesis of various 1,5-dicarbonyl compounds.!~ Previous In a continuation of our studies on Pd-mediated reactions using
syntheses of these compounds from Baylis-Hillman adducts were the Baylis-Hillman adducts,® we theorized that various 1,5-dicar-
carried out by using (carbethoxymethylene)triphenylphospho- bonyl and related compounds could be synthesized easily from
rane,! or via the Johnson-Claisen rearrangement with trialkyl Baylis-Hillman adducts, as shown in Scheme 1, by using the
orthoacetate.”> However, these methods have some drawbacks Pd-mediated decarboxylative protonation as the key step.

including the limitations of substituents." Due to the importance Initially, we synthesized the starting material 3a (EWG; =

of 1,5-dicarbonyl and related moieties in both natural product COOMe, EWG, = COOEt, R = H) from the reaction between the ace-
chemistry and synthetic organic chemistry, a new and efficient tate of Baylis—Hillman adduct and allyl ethyl malonate (2a). How-
synthetic approach is highly desirable.!=>> ever, 3a was obtained as a mixture of E/Z (9:1). Thus, we used

Baylis-Hillman acetates themselves can be used as effective cinnamyl bromide 1a, which can be synthesized as a pure E form

substrates in the Pd-mediated reactions via the corresponding - by the treatment of Baylis-Hillman adduct with aqueous HBr,!°
allylpalladium complex, and many papers using this concept have and obtained 3a-E in good yield (92%, vide infra, entry 1 in Table
already been reported.® Palladium-assisted decarboxylative pro- 2). With this compound 3a, we examined the reaction conditions
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Table 1
Optimization of reaction conditions for the conversion of 3a to 4a
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Entry Conditions® 4a (%)
1 HCOOH (1.2 equiv)/EtsN (1.2 equiv)/CH;CN/reflux/1 h 65

2 HCOOH (1.2 equiv)/EtsN (1.2 equiv)/THF/60 °C/6 h 50

B EtsN (1.2 equiv)/CH3CN-H,0 (9:1)/70 °C/2 h 90 |
4 CH3CN-H,0 (9:1)/70 °C/8 h 67

5 EtsN (1.2 equiv)/dry CH3CN/60 °C/12 h <5

?In all cases, Pd(OAc); (5 mol %) and PPhs (10 mol %) were used.

for the selective Pd-mediated decarboxylative protonation. As
shown in Table 1, the conditions comprised of Pd(OAc),/PPhs/
HCOOH/Et3N in CH3CN (entry 1) afforded 4a in 65%. The reaction
in THF was less effective (entry 2). When the reaction was carried
out under aqueous CH3CN in the presence of Et3N, the highest yield
of 4a (90%) was obtained (entry 3).!! Although the role of Et;N is
not clear at this stage, the reaction without EtsN gave diminished
yield of product (67%, entry 4). The reaction in dry CH3CN was
very sluggish as expected due to the absence of proton source
(entry 5).

Table 2

Synthesis of 1,5-dicarbonyl and related compounds 4

Entry 1+2 3 (%) Time (h) 4% (%)

1 la+2a 3a(92) 2 4a (90)
2 1a+2b 3b (86) 6 4b (88)
3 la+2c 3c (78) 6 4c (89)
4 1la+2d 3d (85) 5 4d (86)
5 1b+2a 3e (89) 3 4e (88)
6 1b +2b 3 (87) 4 4f (91)
7 1b + 2e 3g (71) 2 4g (66)°
8 1c+2d 3h (74) 2 4h (88)

¢ Conditions: Pd(OAc), (5 mol %), PPh3 (10 mol %), Et3N (1.2 equiv), CH3CN-H,0
(9:1), 70°C, 2-6 h.
b Decarboxylative allylation product was isolated in 16%.

Encouraged by the results, we prepared substrates 3b-h from
the reaction of cinnamyl bromides 1a-c and allyl malonates 2a-e
in 71-89% yields. These compounds were subjected to the opti-
mized conditions (entry 3 in Table 1) and we obtained good to
excellent yields of products 4b-h (66-91%), as summarized in
Table 2. It is interesting to note that decarboxylation-allylation
product was also isolated in 16% for the starting material 3g
(entry 7).8

Table 3
Synthesis of 1,5-dicarbonyl compounds 7
0 EWG
. COOMe . R EWG, (i) DABCO, aq THF  EWG; O/\/ conditions? 2
+ O —_—
Ph/Hf ﬂ( "X (i) Compound 2 o COOMe Ph COOMe
O
5a 2 6 7
Entry 5a+2 6 (%) Time (h) 7 (%)
1 5a+2a 6a (46) 2 7a (82)
2 5a+2b 6b (53) 3 7b (87)
3 5a+2d 6¢ (50) 3 7c (96)
@ Conditions: Pd(OAc); (5 mol %), PPhs (10 mol %), Et3N (1.2 equiv), CH3CN-H,0 (9:1), 70 °C, 2-3 h.
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Figure 1. Postulated mechanism.
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Introduction of allyl malonates at the secondary position of the
Baylis-Hillman adducts was carried out according to the reported
conditions involving the use of DABCO in aqueous THF.'? Actually,
we prepared three compounds 6a-c in moderate yields (46-53%)
and then examined the Pd-mediated decarboxylative protonation
reaction (Table 3). As expected 1,5-dicarbonyl compounds 7a-c
were obtained similarly in good yields (82-96%).

The reaction mechanism for the conversion of 3a into 4a can be
postulated as shown in Figure 1. Oxidative addition of Pd(0) to 3a
affords the Pd-carboxylate (I), which is converted to Pd-enolate (II)
after decarboxylation.”® The Pd-enolate reacts with water to give
product 4a and the m-allylpalladium complex, which regenerates
Pd(0) and liberates allyl alcohol.” The detection of liberated allyl
alcohol was somewhat difficult, thus we made the cinnamyl deriv-
ative 3i and carried out decarboxylative protonation under the
same conditions (Scheme 2). We did not observe the formation
of B-methyl styrene. Instead, we isolated cinnamyl alcohol (28%),
cinnamyl acetate (7%), and product 4a (79%). The low yield of cin-
namyl alcohol must be due to the instability of cinnamyl alcohol
itself under the reaction conditions. The mechanism of HCOOH/
EtsN system (entries 1 and 2 in Table 1) might involve the libera-
tion of propene instead of allyl alcohol.”>¢

The reaction of 3a using PPhs/EtsN/aqueous CH3CN/70 °C/5 h
also produced 4a, albeit in lower yield (12%), even in the absence
of Pd(OAc), (Scheme 3). In the reaction, carboxylic acid 8 was iso-
lated in 69% yield. The results demonstrate that hydrolysis of allyl
ester can occur in part without the aid of Pd catalyst, but the sub-
sequent decarboxylation of triethylammonium carboxylate (III) to
triethylammonium enolate (IV) is somewhat difficult.

In summary, we disclose an efficient protocol for the synthesis
of various 1,5-dicarbonyl and related compounds from Baylis-Hill-
man adducts by using the sequential introduction of allyl malo-
nates followed by a Pd-mediated decarboxylative protonation
strategy.
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