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We prepared various 1,5-dicarbonyl and related compounds from Baylis–Hillman adducts by using a
Pd-mediated decarboxylative protonation protocol.
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Baylis–Hillman adducts have been used as effective precursors
for the synthesis of various 1,5-dicarbonyl compounds.1–4 Previous
syntheses of these compounds from Baylis–Hillman adducts were
carried out by using (carbethoxymethylene)triphenylphospho-
rane,1 or via the Johnson–Claisen rearrangement with trialkyl
orthoacetate.2 However, these methods have some drawbacks
including the limitations of substituents.1,2 Due to the importance
of 1,5-dicarbonyl and related moieties in both natural product
chemistry and synthetic organic chemistry, a new and efficient
synthetic approach is highly desirable.1–3,5

Baylis–Hillman acetates themselves can be used as effective
substrates in the Pd-mediated reactions via the corresponding p-
allylpalladium complex, and many papers using this concept have
already been reported.6 Palladium-assisted decarboxylative pro-
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tonation and allylation of allyl esters have also been reported.7,8

In a continuation of our studies on Pd-mediated reactions using
the Baylis–Hillman adducts,9 we theorized that various 1,5-dicar-
bonyl and related compounds could be synthesized easily from
Baylis–Hillman adducts, as shown in Scheme 1, by using the
Pd-mediated decarboxylative protonation as the key step.

Initially, we synthesized the starting material 3a (EWG1 =
COOMe, EWG2 = COOEt, R = H) from the reaction between the ace-
tate of Baylis–Hillman adduct and allyl ethyl malonate (2a). How-
ever, 3a was obtained as a mixture of E/Z (9:1). Thus, we used
cinnamyl bromide 1a, which can be synthesized as a pure E form
by the treatment of Baylis–Hillman adduct with aqueous HBr,10

and obtained 3a-E in good yield (92%, vide infra, entry 1 in Table
2). With this compound 3a, we examined the reaction conditions
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Table 1
Optimization of reaction conditions for the conversion of 3a to 4a

Entry Conditi onsa 4a (%)

1 HCOOH (1.2 equiv)/Et3N (1.2 equiv)/CH3CN/reflux/1 h 65
2 HCOOH (1.2 equiv)/Et3N (1.2 equiv)/THF/60 ºC/6 h 50
3 Et3N (1.2 equiv)/CH3CN—H2O (9:1)/70 ºC/2 h 90

4 CH3CN—H2O (9:1)/70 ºC/8 h 67
5 Et3N (1.2 equiv)/dry CH3CN/60 ºC/12 h <5
a In all cases, Pd(OAc)2 (5 mol %) and PPh3 (10 mol %) were used.

Table 2
Synthesis of 1,5-dicarbonyl and related compounds 4

Entry 1 + 2 3 (%) Time (h) 4a (%)

1 1a + 2a 3a (92) 2 4a (90)
2 1a + 2b 3b (86) 6 4b (88)
3 1a + 2c 3c (78) 6 4c (89)
4 1a + 2d 3d (85) 5 4d (86)
5 1b + 2a 3e (89) 3 4e (88)
6 1b + 2b 3f (87) 4 4f (91)
7 1b + 2e 3g (71) 2 4g (66)b

8 1c + 2d 3h (74) 2 4h (88)

a Conditions: Pd(OAc)2 (5 mol %), PPh3 (10 mol %), Et3N (1.2 equiv), CH3CN–H2O
(9:1), 70 �C, 2–6 h.

b Decarboxylative allylation product was isolated in 16%.
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for the selective Pd-mediated decarboxylative protonation. As
shown in Table 1, the conditions comprised of Pd(OAc)2/PPh3/
HCOOH/Et3N in CH3CN (entry 1) afforded 4a in 65%. The reaction
in THF was less effective (entry 2). When the reaction was carried
out under aqueous CH3CN in the presence of Et3N, the highest yield
of 4a (90%) was obtained (entry 3).11 Although the role of Et3N is
not clear at this stage, the reaction without Et3N gave diminished
yield of product (67%, entry 4). The reaction in dry CH3CN was
very sluggish as expected due to the absence of proton source
(entry 5).
Table 3
Synthesis of 1,5-dicarbonyl compounds 7
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Figure 1. Postulate
Encouraged by the results, we prepared substrates 3b–h from
the reaction of cinnamyl bromides 1a–c and allyl malonates 2a–e
in 71–89% yields. These compounds were subjected to the opti-
mized conditions (entry 3 in Table 1) and we obtained good to
excellent yields of products 4b–h (66–91%), as summarized in
Table 2. It is interesting to note that decarboxylation-allylation
product was also isolated in 16% for the starting material 3g
(entry 7).8
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Introduction of allyl malonates at the secondary position of the
Baylis–Hillman adducts was carried out according to the reported
conditions involving the use of DABCO in aqueous THF.12 Actually,
we prepared three compounds 6a–c in moderate yields (46–53%)
and then examined the Pd-mediated decarboxylative protonation
reaction (Table 3). As expected 1,5-dicarbonyl compounds 7a–c
were obtained similarly in good yields (82–96%).

The reaction mechanism for the conversion of 3a into 4a can be
postulated as shown in Figure 1. Oxidative addition of Pd(0) to 3a
affords the Pd-carboxylate (I), which is converted to Pd-enolate (II)
after decarboxylation.7a The Pd-enolate reacts with water to give
product 4a and the p-allylpalladium complex, which regenerates
Pd(0) and liberates allyl alcohol.7a The detection of liberated allyl
alcohol was somewhat difficult, thus we made the cinnamyl deriv-
ative 3i and carried out decarboxylative protonation under the
same conditions (Scheme 2). We did not observe the formation
of b-methyl styrene. Instead, we isolated cinnamyl alcohol (28%),
cinnamyl acetate (7%), and product 4a (79%). The low yield of cin-
namyl alcohol must be due to the instability of cinnamyl alcohol
itself under the reaction conditions. The mechanism of HCOOH/
Et3N system (entries 1 and 2 in Table 1) might involve the libera-
tion of propene instead of allyl alcohol.7b–e

The reaction of 3a using PPh3/Et3N/aqueous CH3CN/70 �C/5 h
also produced 4a, albeit in lower yield (12%), even in the absence
of Pd(OAc)2 (Scheme 3). In the reaction, carboxylic acid 8 was iso-
lated in 69% yield. The results demonstrate that hydrolysis of allyl
ester can occur in part without the aid of Pd catalyst, but the sub-
sequent decarboxylation of triethylammonium carboxylate (III) to
triethylammonium enolate (IV) is somewhat difficult.

In summary, we disclose an efficient protocol for the synthesis
of various 1,5-dicarbonyl and related compounds from Baylis–Hill-
man adducts by using the sequential introduction of allyl malo-
nates followed by a Pd-mediated decarboxylative protonation
strategy.
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